### **CORRECTION BACC 2006**

# **Exercice 1**

Objectifs généraux : l'élève doit être capable d'interpréter les phénomènes

d'interférences mécaniques.

| Numéro des questions | Objectifs spécifiques                                                       |  |  |
|----------------------|-----------------------------------------------------------------------------|--|--|
|                      | L'élève doit être capable de (d'):                                          |  |  |
| 1) a)                | Définir une fonction sinusoïdale et d'observer la nature de la propagation. |  |  |
| b)                   | Définir et calculer les termes suivants : Fréquence, Période                |  |  |
| 2)                   | Définir et calculer les termes suivants : Célérité de propagation,          |  |  |
|                      | Longueur d'onde                                                             |  |  |
| 3)                   | Définir une fonction sinusoïdale : équation horaire                         |  |  |
| 4)                   | Représenter une fonction sinusoïdale graphiquement                          |  |  |

L'équation horaire de mouvement périodique sinusoïdal :

$$y_{M}(t) = 4\sin(40\pi t + \pi)$$

- 1) a- Phénomène physique observé : propagation d'onde transversale
  - b- Fréquence du mouvement

$$\omega = 2\pi N \rightarrow N = \frac{\omega}{2\pi} = \frac{40\pi}{2\pi}$$
 
$$\boxed{N=20Hz}$$

2) Longueur d'onde  $\lambda$ 

C'est la distance parcourue par l'onde pendant une période

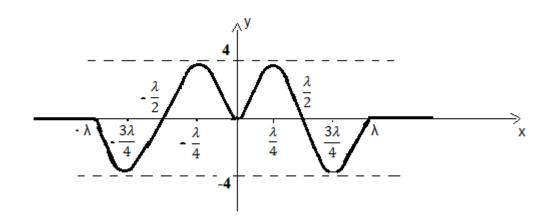
$$\lambda = V \times T = \frac{V}{T}$$

$$\lambda = \frac{50}{20} = 2.5 \text{ cm}$$

$$\lambda = 2.5 \text{cm}$$

3) Equation horaire d'un point M

$$y_{M}(t) = a \sin\left(\omega t - \frac{2\pi}{\lambda}x + \varphi\right)$$


= 
$$4 \sin(40\pi t - \frac{2\pi}{2.5} \times 5 + \pi)$$
  
 $y_M(t) = 4 \sin(40\pi t + \pi)$ 

4) aspect de la surface libre du liquide à  $t=5\times 10^{-2}$ 

$$\begin{aligned} y_{M}(x) &= 4\sin(\frac{2\pi}{\lambda}x - \omega t - \phi + \pi) \\ y_{M}(x) &= 4\sin(\frac{2\pi}{\lambda}x - 40\pi t - \pi + \pi) \\ y_{M}(x) &= 4\sin\left(\frac{2\pi}{\lambda}x - 40\pi (5 \times 10^{-2})\right) \end{aligned}$$

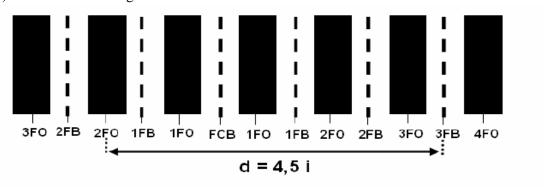
$$y_{M}(x) = 4\sin(\frac{2\pi}{\lambda}x)$$

| X | 0 | $\frac{\lambda}{4}$ | $\frac{\lambda}{2}$ | $\frac{3\lambda}{4}$ | λ |
|---|---|---------------------|---------------------|----------------------|---|
| у | 0 | 4                   | 0                   | -4                   | 0 |



# Exercice 2

### Objectif général: l'élève doit être capable de (d'):


Interpréter le phénomène d'interférences lumineuses ; Expliquer sommairement l'origine des différentes théories de la lumière ;

| Numéro des | Objectifs spécifiques                                      |
|------------|------------------------------------------------------------|
| questions  |                                                            |
|            | L'élève doit être capable de (d'):                         |
| 1) a) b)   | Montrer le caractère ondulatoire de la lumière             |
| 2) a) b)   | Définir et calculer l'interfrange i et les distances D, D' |
|            |                                                            |

Dispositif d'Young d=0,52μm

 $a=F_1$   $F_2=2mm$ 

- a) Observation : sur l'écran (E), on observe des franges d'interférence lumineuse.
- b) Nature de la lumière est ondulatoire.
  - 2)a) calcul de l'interfrange i



$$d = 4.5i \rightarrow i = \frac{d}{4.5} = \frac{2,925}{0.52 \times 10^{-6}}$$
  
 $i = 0.65$ mm

2)b) calcul de distance D

$$i = \frac{\lambda D}{a} \Longrightarrow D = \frac{ia}{\lambda} = \frac{0.65 \times 10^{-3} \times 2 \times 10^{-3}}{0.52 \times 10^{-6}}$$
$$i = 2.5m$$

2)b) calcul de D' si i'=0,702mm et  $\lambda$ =0,52 $\mu$ m ; a=F<sub>1</sub>F<sub>2</sub>=2.10<sup>-3</sup>m

$$i' = \frac{\lambda D'}{a} \Rightarrow D' = \frac{i'a}{\lambda} = \frac{0,702 \times 10^{-3} \times 2 \times 10^{-3}}{0,52 \times 10^{-6}}$$

$$\boxed{D' = 2,7m}$$

### Exercice 3

| Numéro des questions | Objectifs spécifiques                                                 |
|----------------------|-----------------------------------------------------------------------|
| _                    | L'élève doit être capable de (d'):                                    |
| 1)                   | Définir la fréquence seuil, la potentiel d'arrêt Définir et calculer. |
|                      | Déterminer distances D, D'                                            |
| 2) a) b)             | Définir les domaines de longueurs d'onde de l'ultraviolet, de         |
|                      | l'infrarouge et du rayonnement X. Nature corpusculaire : l'effet      |
|                      | photoélectrique                                                       |
| 3)                   | Définir et calculer les termes suivants :                             |
|                      | - Travail d'extraction                                                |
|                      | - Seuil photoélectrique                                               |
|                      | - Énergie cinétique maximale de l'électron                            |

- 1- On appelle fréquence seuil d'un métal la fréquence minimale nécessaire pour avoir l'effet photoélectrique
  - -on appelle potentiel d'arrêt d'une cellule photoémissive la tension négative appliquée entre la cathode et l'anode de la cellule photoémissive pour arrêter l'émission des électrons.
  - énergie cinétique E<sub>C</sub> (en eV puis en Joule)

$$E_C = e|U_0| = 1,68 \text{ eV}$$
  
 $E_C = 1,68 \text{ eV}$   
 $E_C = 1,68 \times 1,6 \times 10^{-19}$   
 $E_C = 2,688 \times 10^{-19} \text{J}$ 

- 2- a) la nature attribuée à la lumière est corpusculaire pour interpréter l'effet photoélectrique
  - b) Energie d'un photon

$$W = h\gamma = 6.62 \times 10^{-34} \times 1.5 \times 10^{15}$$
$$W = 9.93 \times 10^{-19} I$$

3- Longueur d'onde seuil  $\lambda_0$ 

$$W_0 = h\gamma_0 = \frac{hc}{\lambda_0} \Longrightarrow \lambda_0 = \frac{hc}{W_0}$$

Or 
$$W_C = W - W_0 \Rightarrow W_0 = W - E_C = 9.93 \times 10^{-19} - 2.688 \times 10^{-19}$$
 
$$W_0 = 7.242 \times 10^{-19} J$$
 
$$\lambda_0 = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{7.242 \times 10^{-19}} = 2.742 \times 10^{-7}$$
 
$$\lambda_0 = 0.274 \mu m$$